This is a quick note to record some thoughts following from Toby Gee’s first lecture of his course at the Arizona Winter School, where he observes that quadratic reciprocity is a completely immediate consequence of basic algebraic number theory. I feel rather silly for never having noticed this before, and hope I don’t insult the reader by providing a post on it.
That quadratic reciprocity follows immediately from class field theory is standard, and for the rational numbers class field theory can be decomposed into the irreducibility of cyclotomic polynomials (reciprocity laws for cyclotomic extensions) and the Kronecker-Weber theorem (cyclotomic extensions fill out all the abelian extensions). Of these, I would only consider the second to be `hard’.
The key point that makes quadratic reciprocity strictly easier than class field theory is that for an odd prime, the quadratic extensions
are the unique quadratic extensions ramified only at
. They therefore obviously satisfy the Kronecker-Weber theorem, since
has a degree 2 subextension which is ramified only at
and thus equal to
.
We can easily make this more explicit. Consider the quadratic character
.
By definition (more or less), for odd, this character is unramified and
.
On the other hand, by our previous observation (“Kronecker Weber” in this special case), and the standard isomorphism between and
(“irreducibility of cyclotomic poly”: here just Eisenstein’s theorem), we obtain the factorisation:
,
where is mapped to the class of
modulo
. Equipped with this description (and recalling that
is cyclic), it is clear that
.
Comparing the two expressions obtained, we recover the classical quadratic reciprocity law. One can also handle the same way with a small amount of care (over the correct way to interpret the first expression: Hensel’s lemma doesn’t give a direct comparison with a Legendre symbol in this case).
2 comments
Comments feed for this article
March 22, 2013 at 3:46 am
Yihang Zhu
A typo: the exponent should be p-1/2? Also a remark that might make he situation even more elementry : to show that K_p is in the cyclo. field, the square root of the modified p can also be constructed by the Gauss sum of chi directly.
March 22, 2013 at 3:54 am
Yihang Zhu
A typo: the exponent should be p-1/2? Also a remark that might make he situation even more elementry : to show that K_p is in the cyclo. field, the square root of the modified p can also be constructed by the Gauss sum of chi directly.